
1

Artificial intelligence 1:
informed search

Lecturer: Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Outline

 Informed = use problem-specific knowledge
 Which search strategies?

– Best-first search and its variants

 Heuristic functions?

Pag.6 februari
2008

2
AI 1

 Heuristic functions?
– How to invent them

 Local search and optimization
– Hill climbing, local beam search, genetic algorithms,…

 Local search in continuous spaces
 Online search agents

Previously: tree-search

function TREE-SEARCH(problem,fringe) return a solution or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if EMPTY?(fringe) then return failure
node ← REMOVE FIRST(fringe)

Pag.6 februari
2008

3
AI 1

node ← REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)
fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of
node expansion

Best-first search

 General approach of informed search:
– Best-first search: node is selected for expansion based on

an evaluation function f(n)

 Idea: evaluation function measures distance

Pag.6 februari
2008

4
AI 1

 Idea: evaluation function measures distance
to the goal.
– Choose node which appears best

 Implementation:
– fringe is queue sorted in decreasing order of desirability.
– Special cases: greedy search, A* search

A heuristic function

 [dictionary]“A rule of thumb, simplification,
or educated guess that reduces or limits the
search for solutions in domains that are
diffic lt and poo l nde stood ”

Pag.6 februari
2008

5
AI 1

difficult and poorly understood.”
– h(n) = estimated cost of the cheapest path from node n to

goal node.
– If n is goal then h(n)=0

More information later.

Romania with step costs in km

 hSLD=straight-line
distance heuristic.

 hSLD can NOT be
computed from the

bl d i i

Pag.6 februari
2008

6
AI 1

problem description
itself

 In this example
f(n)=h(n)
– Expand node that is closest

to goal

= Greedy best-first search

2

Greedy search example

Arad (366)

Pag.6 februari
2008

7
AI 1

 Assume that we want to use greedy search
to solve the problem of travelling from Arad
to Bucharest.

 The initial state=Arad

Greedy search example

Arad

Sibiu(253) Zerind(374)

Pag.6 februari
2008

8
AI 1

 The first expansion step produces:
– Sibiu, Timisoara and Zerind

 Greedy best-first will select Sibiu.

Timisoara
(329)

Greedy search example

Arad

Sibiu

Pag.6 februari
2008

9
AI 1

 If Sibiu is expanded we get:
– Arad, Fagaras, Oradea and Rimnicu Vilcea

 Greedy best-first search will select: Fagaras

Arad
(366) Fagaras

(176)
Oradea
(380)

Rimnicu Vilcea
(193)

Greedy search example

Arad

Sibiu

Fagaras

Pag.6 februari
2008

10
AI 1

 If Fagaras is expanded we get:
– Sibiu and Bucharest

 Goal reached !!
– Yet not optimal (see Arad, Sibiu, Rimnicu Vilcea, Pitesti)

Sibiu
(253)

Bucharest
(0)

Greedy search, evaluation

 Completeness: NO (cfr. DF-search)
– Check on repeated states
– Minimizing h(n) can result in false starts, e.g. Iasi to

Fagaras.

Pag.6 februari
2008

11
AI 1

g

Greedy search, evaluation

 Completeness: NO (cfr. DF-search)
 Time complexity?

– Cfr. Worst-case DF-search
(i h i i d h f h)

O(bm)

Pag.6 februari
2008

12
AI 1

(with m is maximum depth of search space)
– Good heuristic can give dramatic improvement.

3

Greedy search, evaluation

 Completeness: NO (cfr. DF-search)
 Time complexity:
 Space complexity:

O(bm)
O(bm)

Pag.6 februari
2008

13
AI 1

 Space complexity:
– Keeps all nodes in memory

O(b)

Greedy search, evaluation

 Completeness: NO (cfr. DF-search)
 Time complexity:
 Space complexity:

O(bm)
O(bm)

Pag.6 februari
2008

14
AI 1

 Space complexity:
 Optimality? NO

– Same as DF-search

A* search

 Best-known form of best-first search.
 Idea: avoid expanding paths that are already

expensive.

Pag.6 februari
2008

15
AI 1

 Evaluation function f(n)=g(n) + h(n)
– g(n) the cost (so far) to reach the node.
– h(n) estimated cost to get from the node to the goal.
– f(n) estimated total cost of path through n to goal.

A* search

 A* search uses an admissible heuristic
– A heuristic is admissible if it never overestimates the

cost to reach the goal
Are optimistic

Pag.6 februari
2008

16
AI 1

– Are optimistic

Formally:
1. h(n) <= h*(n) where h*(n) is the true cost from n
2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hSLD(n) never overestimates the actual road distance

Romania example

Pag.6 februari
2008

17
AI 1

A* search example

Pag.6 februari
2008

18
AI 1

 Find Bucharest starting at Arad
– f(Arad) = c(??,Arad)+h(Arad)=0+366=366

4

A* search example

Pag.6 februari
2008

19
AI 1

 Expand Arrad and determine f(n) for each node
– f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393
– f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447
– f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449

 Best choice is Sibiu

A* search example

Pag.6 februari
2008

20
AI 1

 Expand Sibiu and determine f(n) for each node
– f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646
– f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415
– f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671
– f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+

h(Rimnicu Vilcea)=220+192=413

 Best choice is Rimnicu Vilcea

A* search example

Pag.6 februari
2008

21
AI 1

 Expand Rimnicu Vilcea and determine f(n) for
each node
– f(Craiova)=c(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526
– f(Pitesti)=c(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417
– f(Sibiu)=c(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553

 Best choice is Fagaras

A* search example

Pag.6 februari
2008

22
AI 1

 Expand Fagaras and determine f(n) for each
node
– f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591
– f(Bucharest)=c(Fagaras,Bucharest)+h(Bucharest)=450+0=450

 Best choice is Pitesti !!!

A* search example

Pag.6 februari
2008

23
AI 1

 Expand Pitesti and determine f(n) for each node
– f(Bucharest)=c(Pitesti,Bucharest)+h(Bucharest)=418+0=418

 Best choice is Bucharest !!!
– Optimal solution (only if h(n) is admissable)

 Note values along optimal path !!

Optimality of A*(standard proof)

Pag.6 februari
2008

24
AI 1

 Suppose suboptimal goal G2 in the queue.
 Let n be an unexpanded node on a shortest to

optimal goal G.
f(G2) = g(G2) since h(G2)=0

> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion

5

BUT … graph search

 Discards new paths to repeated
state.
– Previous proof breaks down

Pag.6 februari
2008

25
AI 1

 Solution:
– Add extra bookkeeping i.e. remove more

expsive of two paths.
– Ensure that optimal path to any repeated

state is always first followed.
– Extra requirement on h(n): consistency (monotonicity)

Consistency

 A heuristic is consistent if

 If h is consistent, we have
h(n) ≤ c(n,a,n') + h(n')

Pag.6 februari
2008

26
AI 1

i.e. f(n) is nondecreasing along any path.

f (n') = g(n')+ h(n')
= g(n) + c(n,a,n') + h(n')
≥ g(n) + h(n)
≥ f (n)

Optimality of A*(more usefull)

 A* expands nodes in order of increasing f value
 Contours can be drawn in state space

– Uniform-cost search adds circles.

– F-contours are gradually

Pag.6 februari
2008

27
AI 1

Added:
1) nodes with f(n)<C*
2) Some nodes on the goal
Contour (f(n)=C*).

Contour I has all
Nodes with f=fi, where
fi < fi+1.

A* search, evaluation

 Completeness: YES
– Since bands of increasing f are added
– Unless there are infinitly many nodes with f<f(G)

Pag.6 februari
2008

28
AI 1

A* search, evaluation

 Completeness: YES
 Time complexity:

– Number of nodes expanded is still exponential in the

Pag.6 februari
2008

29
AI 1

p p
length of the solution.

A* search, evaluation

 Completeness: YES
 Time complexity: (exponential with path

length)

Pag.6 februari
2008

30
AI 1

 Space complexity:
– It keeps all generated nodes in memory
– Hence space is the major problem not time

6

A* search, evaluation

 Completeness: YES
 Time complexity: (exponential with path

length)
 Space comple it (all nodes a e sto ed)

Pag.6 februari
2008

31
AI 1

 Space complexity:(all nodes are stored)
 Optimality: YES

– Cannot expand fi+1 until fi is finished.
– A* expands all nodes with f(n)< C*
– A* expands some nodes with f(n)=C*
– A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)

Memory-bounded heuristic search

 Some solutions to A* space problems
(maintain completeness and optimality)
– Iterative-deepening A* (IDA*)

Pag.6 februari
2008

32
AI 1

– Here cutoff information is the f-cost (g+h) instead of depth

– Recursive best-first search(RBFS)
– Recursive algorithm that attempts to mimic standard best-first

search with linear space.

– (simple) Memory-bounded A* ((S)MA*)
– Drop the worst-leaf node when memory is full

Recursive best-first search

function RECURSIVE-BEST-FIRST-SEARCH(problem) return a solution or failure
return RFBS(problem,MAKE-NODE(INITIAL-STATE[problem]),∞)

function RFBS(problem, node, f_limit) return a solution or failure and a new f-
cost limit
if GOAL-TEST[problem](STATE[node]) then return node
successors ← EXPAND(node problem)

Pag.6 februari
2008

33
AI 1

successors ← EXPAND(node, problem)
if successors is empty then return failure, ∞
for each s in successors do

f [s] ← max(g(s) + h(s), f [node])
repeat

best ← the lowest f-value node in successors
if f [best] > f_limit then return failure, f [best]
alternative ← the second lowest f-value among successors
result, f [best] ← RBFS(problem, best, min(f_limit, alternative))
if result ≠ failure then return result

Recursive best-first search

 Keeps track of the f-value of the
best-alternative path available.
– If current f-values exceeds this alternative f-

Pag.6 februari
2008

34
AI 1

If current f values exceeds this alternative f
value than backtrack to alternative path.

– Upon backtracking change f-value to best f-
value of its children.

– Re-expansion of this result is thus still
possible.

Recursive best-first search, ex.

Pag.6 februari
2008

35
AI 1

 Path until Rumnicu Vilcea is already expanded
 Above node; f-limit for every recursive call is shown on top.
 Below node: f(n)
 The path is followed until Pitesti which has a f-value worse than

the f-limit.

Recursive best-first search, ex.

Pag.6 februari
2008

36
AI 1

 Unwind recursion and store best f-value for
current best leaf Pitesti

result, f [best] ← RBFS(problem, best, min(f_limit, alternative))

 best is now Fagaras. Call RBFS for new best
– best value is now 450

7

Recursive best-first search, ex.

Pag.6 februari
2008

37
AI 1

 Unwind recursion and store best f-value for current best leaf
Fagaras

result, f [best] ← RBFS(problem, best, min(f_limit, alternative))

 best is now Rimnicu Viclea (again). Call RBFS for new best
– Subtree is again expanded.
– Best alternative subtree is now through Timisoara.

 Solution is found since because 447 > 417.

RBFS evaluation

 RBFS is a bit more efficient than IDA*
– Still excessive node generation (mind changes)

 Like A*, optimal if h(n) is admissible
 Space complexity is O(bd)

Pag.6 februari
2008

38
AI 1

 Space complexity is O(bd).
– IDA* retains only one single number (the current f-cost limit)

 Time complexity difficult to characterize
– Depends on accuracy if h(n) and how often best path changes.

 IDA* en RBFS suffer from too little memory.

(simplified) memory-bounded A*

 Use all available memory.
– I.e. expand best leafs until available memory is full
– When full, SMA* drops worst leaf node (highest f-value)
– Like RFBS backup forgotten node to its parent

Pag.6 februari
2008

39
AI 1

 What if all leafs have the same f-value?
– Same node could be selected for expansion and deletion.
– SMA* solves this by expanding newest best leaf and deleting

oldest worst leaf.

 SMA* is complete if solution is reachable, optimal if
optimal solution is reachable.

Learning to search better

 All previous algorithms use fixed strategies.
 Agents can learn to improve their search by

exploiting the meta-level state space.

Pag.6 februari
2008

40
AI 1

– Each meta-level state is a internal (computational) state of
a program that is searching in the object-level state space.

– In A* such a state consists of the current search tree

 A meta-level learning algorithm from
experiences at the meta-level.

Heuristic functions

Pag.6 februari
2008

41
AI 1

 E.g for the 8-puzzle
– Avg. solution cost is about 22 steps (branching factor +/- 3)
– Exhaustive search to depth 22: 3.1 x 1010 states.
– A good heuristic function can reduce the search process.

Heuristic functions

Pag.6 februari
2008

42
AI 1

 E.g for the 8-puzzle knows two commonly used heuristics
 h1 = the number of misplaced tiles

– h1(s)=8

 h2 = the sum of the distances of the tiles from their goal
positions (manhattan distance).
– h2(s)=3+1+2+2+2+3+3+2=18

8

Heuristic quality

 Effective branching factor b*
– Is the branching factor that a uniform tree of

depth d would have in order to contain N+1
nodes.

Pag.6 februari
2008

43
AI 1

odes

– Measure is fairly constant for sufficiently hard
problems.

– Can thus provide a good guide to the heuristic’s overall
usefulness.

– A good value of b* is 1.

N +1=1+ b*+(b*)2 + ...+ (b*)d

Heuristic quality and dominance

 1200 random problems with solution lengths
from 2 to 24.

Pag.6 februari
2008

44
AI 1

 If h2(n) >= h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Inventing admissible heuristics

 Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem:
– Relaxed 8-puzzle for h1 : a tile can move anywhere

As a result, h1(n) gives the shortest solution

R l d 8 l f h il dj

Pag.6 februari
2008

45
AI 1

– Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.
As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no
greater than the optimal solution cost of the real
problem.

ABSolver found a usefull heuristic for the rubic cube.

Inventing admissible heuristics

 Admissible heuristics can also be derived from the solution cost
of a subproblem of a given problem.

 This cost is a lower bound on the cost of the real problem.
 Pattern databases store the exact solution to for every possible

subproblem instance.

Pag.6 februari
2008

46
AI 1

subproblem instance.
– The complete heuristic is constructed using the patterns in the DB

Inventing admissible heuristics

 Another way to find an admissible
heuristic is through learning from
experience:

Pag.6 februari
2008

47
AI 1

p
– Experience = solving lots of 8-puzzles
– An inductive learning algorithm can be used to predict

costs for other states that arise during search.

Local search and optimization

 Previously: systematic exploration of search
space.
– Path to goal is solution to problem

 YET f bl th i i l t

Pag.6 februari
2008

48
AI 1

 YET, for some problems path is irrelevant.
– E.g 8-queens

 Different algorithms can be used
– Local search

9

Local search and optimization

 Local search= use single current state and
move to neighboring states.

 Advantages:
– Use very little memory

Pag.6 februari
2008

49
AI 1

– Use very little memory
– Find often reasonable solutions in large or infinite state

spaces.

 Are also useful for pure optimization
problems.
– Find best state according to some objective function.
– e.g. survival of the fittest as a metaphor for optimization.

Local search and optimization

Pag.6 februari
2008

50
AI 1

Hill-climbing search

 “is a loop that continuously moves in the
direction of increasing value”
– It terminates when a peak is reached.

 Hill climbing does not look ahead of the

Pag.6 februari
2008

51
AI 1

 Hill climbing does not look ahead of the
immediate neighbors of the current state.

 Hill-climbing chooses randomly among the
set of best successors, if there is more than
one.

 Hill-climbing a.k.a. greedy local search

Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local
maximum
input: problem, a problem
local variables: current, a node.

neighbor, a node.

Pag.6 februari
2008

52
AI 1

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor ← a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return

STATE[current]
current ← neighbor

Hill-climbing example

 8-queens problem (complete-state
formulation).

 Successor function: move a single queen to

Pag.6 februari
2008

53
AI 1

another square in the same column.
 Heuristic function h(n): the number of pairs

of queens that are attacking each other
(directly or indirectly).

Hill-climbing example

a) b)

Pag.6 februari
2008

54
AI 1

a) shows a state of h=17 and the h-value for
each possible successor.

b) A local minimum in the 8-queens state
space (h=1).

10

Drawbacks

Pag.6 februari
2008

55
AI 1

 Ridge = sequence of local maxima difficult for
greedy algorithms to navigate

 Plateaux = an area of the state space where the
evaluation function is flat.

 Gets stuck 86% of the time.

Hill-climbing variations

 Stochastic hill-climbing
– Random selection among the uphill moves.
– The selection probability can vary with the

steepness of the uphill move

Pag.6 februari
2008

56
AI 1

steepness of the uphill move.

 First-choice hill-climbing
– cfr. stochastic hill climbing by generating

successors randomly until a better one is found.

 Random-restart hill-climbing
– Tries to avoid getting stuck in local maxima.

Simulated annealing

 Escape local maxima by allowing “bad” moves.
– Idea: but gradually decrease their size and frequency.

 Origin; metallurgical annealing
 Bouncing ball analogy:

Pag.6 februari
2008

57
AI 1

 Bouncing ball analogy:
– Shaking hard (= high temperature).
– Shaking less (= lower the temperature).

 If T decreases slowly enough, best state is reached.
 Applied for VLSI layout, airline scheduling, etc.

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem

schedule, a mapping from time to temperature
local variables: current, a node.

next, a node.
T, a “temperature” controlling the probability of downward steps

Pag.6 februari
2008

58
AI 1

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do

T ← schedule[t]
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← VALUE[next] - VALUE[current]
if ∆E > 0 then current ← next
else current ← next only with probability e∆E /T

Local beam search

 Keep track of k states instead of one
– Initially: k random states
– Next: determine all successors of k states
– If any of successors is goal → finished

Pag.6 februari
2008

59
AI 1

If any of successors is goal → finished
– Else select k best from successors and repeat.

 Major difference with random-restart search
– Information is shared among k search threads.

 Can suffer from lack of diversity.
– Stochastic variant: choose k successors at proportionally to

state success.

Genetic algorithms

 Variant of local beam search with sexual
recombination.

Pag.6 februari
2008

60
AI 1

11

Genetic algorithms

 Variant of local beam search with sexual
recombination.

Pag.6 februari
2008

61
AI 1

Genetic algorithm

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual
input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual
repeat

new_population ← empty set
loop for i from 1 to SIZE(population) do

Pag.6 februari
2008

62
AI 1

loop for i from 1 to SIZE(population) do
x ← RANDOM_SELECTION(population, FITNESS_FN)
y ← RANDOM_SELECTION(population, FITNESS_FN)
child ← REPRODUCE(x,y)
if (small random probability) then child ← MUTATE(child)
add child to new_population

population ← new_population
until some individual is fit enough or enough time has elapsed
return the best individual

Exploration problems

 Until now all algorithms were offline.
– Offline= solution is determined before executing it.
– Online = interleaving computation and action

 Online search is necessary for dynamic and

Pag.6 februari
2008

63
AI 1

 Online search is necessary for dynamic and
semi-dynamic environments
– It is impossible to take into account all possible

contingencies.

 Used for exploration problems:
– Unknown states and actions.
– e.g. any robot in a new environment, a newborn baby,…

Online search problems

 Agent knowledge:
– ACTION(s): list of allowed actions in state s
– C(s,a,s’): step-cost function (! After s’ is determined)
– GOAL-TEST(s)

 An agent can recognize previous states

Pag.6 februari
2008

64
AI 1

 An agent can recognize previous states.
 Actions are deterministic.
 Access to admissible heuristic h(s)

e.g. manhattan distance

Online search problems

 Objective: reach goal with minimal cost
– Cost = total cost of travelled path
– Competitive ratio=comparison of cost with cost of the

solution path if search space is known.

Pag.6 februari
2008

65
AI 1

p p
– Can be infinite in case of the agent

accidentally reaches dead ends

The adversary argument

Pag.6 februari
2008

66
AI 1

 Assume an adversary who can construct the state
space while the agent explores it
– Visited states S and A. What next?

– Fails in one of the state spaces

 No algorithm can avoid dead ends in all state
spaces.

12

Online search agents

 The agent maintains a map of the
environment.
– Updated based on percept input.

Pag.6 februari
2008

67
AI 1

– This map is used to decide next action.

Note difference with e.g. A*
An online version can only expand the node it is

physically in (local order)

Online DF-search

function ONLINE_DFS-AGENT(s’) return an action
input: s’, a percept identifying current state
static: result, a table indexed by action and state, initially empty

unexplored, a table that lists for each visited state, the action not yet tried
unbacktracked, a table that lists for each visited state, the backtrack not yet tried
s,a, the previous state and action, initially null

Pag.6 februari
2008

68
AI 1

if GOAL-TEST(s’) then return stop
if s’ is a new state then unexplored[s’] ← ACTIONS(s’)
if s is not null then do

result[a,s] ← s’
add s to the front of unbackedtracked[s’]

if unexplored[s’] is empty then
if unbacktracked[s’] is empty then return stop
else a ← an action b such that result[b, s’]=POP(unbacktracked[s’])

else a ← POP(unexplored[s’])
s ← s’
return a

Online DF-search, example

 Assume maze problem
on 3x3 grid.

 s’ = (1,1) is initial state
 Result, unexplored (UX),

Pag.6 februari
2008

69
AI 1

, p (),
unbacktracked (UB), …

are empty
 S,a are also empty

Online DF-search, example

 GOAL-TEST((,1,1))?
– S not = G thus false

 (1,1) a new state?
– True
– ACTION((1,1)) -> UX[(1,1)]

– {RIGHT,UP}

S’=(1,1)

Pag.6 februari
2008

70
AI 1

{RIGHT,UP}

 s is null?
– True (initially)

 UX[(1,1)] empty?
– False

 POP(UX[(1,1)])->a
– A=UP

 s = (1,1)
 Return a

Online DF-search, example

 GOAL-TEST((2,1))?
– S not = G thus false

 (2,1) a new state?
– True
– ACTION((2,1)) -> UX[(2,1)]

S’=(2,1)

Pag.6 februari
2008

71
AI 1

– {DOWN}

 s is null?
– false (s=(1,1))
– result[UP,(1,1)] <- (2,1)
– UB[(2,1)]={(1,1)}

 UX[(2,1)] empty?
– False

 A=DOWN, s=(2,1) return A

S

Online DF-search, example

 GOAL-TEST((1,1))?
– S not = G thus false

 (1,1) a new state?
– false

 s is null?

S’=(1,1)

Pag.6 februari
2008

72
AI 1

– false (s=(2,1))
– result[DOWN,(2,1)] <- (1,1)
– UB[(1,1)]={(2,1)}

 UX[(1,1)] empty?
– False

 A=RIGHT, s=(1,1) return A
S

13

Online DF-search, example

 GOAL-TEST((1,2))?
– S not = G thus false

 (1,2) a new state?
– True,

UX[(1,2)]={RIGHT,UP,LEFT}

S’=(1,2)

Pag.6 februari
2008

73
AI 1

 s is null?
– false (s=(1,1))
– result[RIGHT,(1,1)] <- (1,2)
– UB[(1,2)]={(1,1)}

 UX[(1,2)] empty?
– False

 A=LEFT, s=(1,2) return A

S

Online DF-search, example

 GOAL-TEST((1,1))?
– S not = G thus false

 (1,1) a new state?
– false

 s is null?
– false (s=(1,2))

S’=(1,1)

Pag.6 februari
2008

74
AI 1

a ((,))
– result[LEFT,(1,2)] <- (1,1)
– UB[(1,1)]={(1,2),(2,1)}

 UX[(1,1)] empty?
– True
– UB[(1,1)] empty? False

 A= b for b in
result[b,(1,1)]=(1,2)
– B=RIGHT

 A=RIGHT, s=(1,1) …

S

Online DF-search

 Worst case each node is
visited twice.

 An agent can go on a long
walk even when it is close to
the solution.

Pag.6 februari
2008

75
AI 1

 An online iterative deepening
approach solves this problem.

 Online DF-search works only
when actions are reversible.

Online local search

 Hill-climbing is already online
– One state is stored.

 Bad performancd due to local maxima
– Random restarts impossible.

 Solution: Random walk introduces exploration (can produce

Pag.6 februari
2008

76
AI 1

p (p
exponentially many steps)

Online local search

 Solution 2: Add memory to hill climber
– Store current best estimate H(s) of cost to reach goal
– H(s) is initially the heuristic estimate h(s)
– Afterward updated with experience (see below)

 Learning real time A* (LRTA*)

Pag.6 februari
2008

77
AI 1

 Learning real-time A* (LRTA*)

Learning real-time A*

function LRTA*-COST(s,a,s’,H) return an cost estimate
if s’ is undefined the return h(s)
else return c(s,a,s’) + H[s’]

function LRTA*-AGENT(s’) return an action
input: s’, a percept identifying current state
static: result, a table indexed by action and state, initially empty

H, a table of cost estimates indexed by state, initially empty
s,a, the previous state and action, initially null

Pag.6 februari
2008

78
AI 1

s,a, the previous state and action, initially null

if GOAL-TEST(s’) then return stop
if s’ is a new state (not in H) then H[s’] ← h(s’)
unless s is null

result[a,s] ← s’
H[s] ← MIN LRTA*-COST(s,b,result[b,s],H)

b ∈ ACTIONS(s)

a ← an action b in ACTIONS(s’) that minimizes LRTA*-COST(s’,b,result[b,s’],H)
s ← s’
return a

